
Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

211

File Banding

13 File Banding

13.1 Introduction

We saw in Chapter 11 that the Field Values Table (or Tables, plural) will always be in memory at run time, at least to a

irst approximation. And we saw in Chapter 12 how to use ile factoring to reduce the space requirements for the Record

Reconstruction Table(s) as well; basically, what we do is decompose the original ile—at least conceptually—so that we

wind up with one “large” Record Reconstruction Table and several “small” ones. And the small Record Reconstruction

Tables too will always be in memory at run time (again to a irst approximation). So we’re let with the large Record

Reconstruction Table on disk. hat large table can’t be compressed any further, more or less by deinition; in other words,

if we regard its contents just as simple bit strings, then those bit strings are essentially random sequences of zeros and

ones.1 he techniques discussed in this chapter and the next are speciically aimed at getting the best possible performance

out of that large table, despite the fact that it’s necessarily disk-resident.

Before I go any further, I should make it clear that, although I call it “large,” the table we’re dealing with—in fact, the

entire TR data representation, including the Field Values Table(s) and all of the corresponding Record Reconstruction

Tables—is still likely to be far smaller than a conventional direct-image representation. Actual experiments have shown

that a reduction of ive to one is quite typical (if anything, that estimate is probably on the low side). And that’s just for

the raw data; when indexes and other auxiliary structures are taken into account, the direct-image space requirement can

increase by another ive-to-one ratio, possibly even more.2 However, when I need to appeal to such matters later in this

chapter, I’ll stick, conservatively, to the ive-to-one igure.

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Go Faster!

212

File Banding

Anyway, to remind you from Chapter 11, the problem with the large table is that the zigzags in that table, even if their

starting points are physically contiguous (as indeed they are, because the table is stored column-wise), quickly splay out to

essentially random positions “all over the disk,” with the consequence that we might have to do a separate seek for every

point ater the starting point every time we chase such a zigzag. File banding, or just banding for short, is a technique for

addressing this problem. Here in outline is how it works:

•	 Starting with a given user-level relation and hence a corresponding ile, we sort that ile into order based on

values of some characteristic ield (or ield combination; for simplicity, I’ll assume throughout what follows

that we’re always dealing with a single characteristic ield, barring explicit statements to the contrary).

•	 Next, we decompose that sorted ile horizontally3 into two or more subiles of approximately equal size.

Each subile is smaller than the original ile in the sense that it has fewer records (usually far fewer) than

the original ile did. Note: he oicial term for “horizontal subiles” is bands, and I’ll favor this latter term

in subsequent sections. You can think of those bands or horizontal subiles as partitions, if you like; note,

however, that speciics of the partitioning in question are determined primarily by physical space requirements

and only secondarily by values of the characteristic ield. We’ll see some implications of this state of afairs in

the next section (in particular, we’ll see that a given characteristic ield value might appear in more than one

band, something that couldn’t happen if the partitioning were done purely on the basis of values of that ield).

•	 We then represent each of those subiles or bands by its own Field Values Table and its own Record

Reconstruction Table. Because the bands are smaller than the original ile, those Field Values and Record

Reconstruction Tables too are smaller than their counterparts would have been for the original ile. In fact,

we choose the band size such that any given band can it into memory in its entirety at run time, and we

lay the bands out on the disk in such a way as to allow any given band to be streamed into memory as and

when it’s needed. (When I say the entire band its into memory, what I’m mainly talking about is the Record

Reconstruction Table for the given band, of course. If the Record Reconstruction Table for a given band can

be entirely contained in memory, then all of the zigzags within that table will also be entirely contained in

memory a fortiori, and—insofar as that particular table is concerned, at least—the splay problem thus won’t

arise.)

Note: Please understand that the foregoing account is deliberately somewhat simpliied; I’ll come back and explain later

(in Section 13.4) how banding is really done. However, the foregoing explanation is accurate enough to serve as a basis

for discussions prior to that section.

he structure of the chapter is as follows. Following this introductory section, I’ll explain the basic idea of banding by

means of a simple example in Section 13.2; then I’ll elaborate on and generalize from that example in Section 13.3, and

introduce the important idea of controlled redundancy. As already mentioned, in Section 13.4 I’ll build on the ideas

of previous sections to show how banding is really done. Finally, in Section 13.5, I’ll discuss the concept of controlled

redundancy in more detail.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

213

File Banding

13.2 A Simple Example

In the interests of “user-friendliness,” I’ll continue to work with the familiar parts example (or an extended version of that

example, rather). Assume again—as in Chapter 12, Section 12.5—that we’ve factored the parts ile into large and small

iles that look like this:

Large ile Small ile

P# CC#

PNAME COLOR

WEIGHT CITY

CC#

Sample values for these iles are shown in Fig. 13.1 (an extended version of Fig. 12.2 from Chapter 12). Note: Of course, it’s

the large ile we’re interested in here, not the small one. In the igure, of course, that ile is hardly very “large” (obviously,

since it has just nine records); however, don’t lose sight of the fact that if we’re really supposed to be building on the example

from Chapter 12, then the ile is really supposed to have some ten million records. What’s more, ields in that ile—with the

obvious exception of the introduced artiicial identiier CC#—are supposed to be of high cardinality, meaning each such

ield has around ten million distinct values as well; in fact, the data in the large ile isn’t supposed to display any “statistical

clumpiness” at all.

Fig. 13.1: Parts factored into large and small iles (sample values)

For the purpose of comparison with later igures (Figs. 13.5 and 13.6 in particular), Figs. 13.2 and 13.3 show the Field

Values Table and a possible Record Reconstruction Table for the large ile (only) of Fig. 13.1. Note: For simplicity,

throughout the examples in this chapter, I’ll omit the direct pointers into the corresponding Field Values Table that the

Record Reconstruction Table might contain in practice (or not, as the case may be).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

214

File Banding

Fig. 13.2: Field Values Table for the large ile of Fig. 13.1

Fig. 13.3: Record Reconstruction Table for the large ile of Fig. 13.1

Now, let’s assume page size is one megabyte (a igure that, as we saw in Chapter 11, is quite realistic). For simplicity, let’s

assume also that band size is the same as page size (though a band might map into any number of consecutive disk pages,

in general—it’s just a matter of what page size we’re working with and how much memory we have available). Without

getting into tedious arithmetic details, then, for a ile of 10 million records and hence 24-bit pointers in the Record

Reconstruction Table, we might get (say) 80,000 rows from that table into each band, for an overall total of 125 bands.

Note: Actually that igure of 80,000 rows per band is too low (and the igure of 125 bands is accordingly too high), for

reasons I’ll explain later in this section.

Moving now from reality back to our toy example, let’s assume the band size we have to work with corresponds to a

maximum of just four records from the large ile ... hat ile is (let’s assume) sorted on ascending part number—in other

words, P# is the characteristic ield in this example—and so (referring to Fig. 13.1) band one will correspond to records

1-4, band two to records 5-8, and band three to record 9 only. Figs. 13.4, 13.5, and 13.6 show, respectively, the banded

version of the ile, the Field Values Tables for those bands, and Record Reconstruction Tables for those bands.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

215

File Banding

Fig. 13.4: Large ile decomposed into three bands

Fig. 13.5: Field Values Tables for the bands of Fig. 13.4

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

216

File Banding

Fig. 13.6: Record Reconstruction Tables for the bands of Fig. 13.4

Several points arise from the foregoing simple example:

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Go Faster!

217

File Banding

•	 First of all, I need to own up to a slight terminological inexactitude on my part. When I irst mentioned

banding in the introduction to this chapter (also in Chapter 11), I said we decomposed the ile into

horizontal subiles called bands, and so “band” was a concept at the ile level. As you might have noticed,

however, I subsequently started talking about bands itting into memory at run time, and so “band” became

a concept at the TR level (or possibly at some lower and more physical level still). However, it’s very

convenient to be able to use the same term band at these diferent levels of abstraction within the overall

system, and—trusting that the practice won’t cause confusion—I intend to continue doing the same thing

throughout the remainder of this chapter.

•	 Next, observe that the Record Reconstruction Table for any given band does indeed involve pointers that are

local to the band in question. In the igures I’ve stressed this fact by using 1-4 as the sole legal pointer values

for band one, 5-8 as the sole legal pointer values for band two, and 9 as the sole legal pointer value for band

three. In practice, of course, pointer values need only be unique within the relevant band (since the whole

object of the exercise is not to have pointers out of one band into another).

•	 Precisely because pointers need now be unique only within the relevant band instead of within the entire

ile, they need fewer bits than they did before (before we did the banding, I mean). To revert for a moment

to the example of a ile with ten million records: Without banding, pointers are 24 bits, as we know; with

banding, however, if one band corresponds to 80,000 records as suggested above, then pointers need be

only 17 bits instead of 24—another signiicant space saving (and, be it noted, one that applies to the large

Record Reconstruction Table speciically, a most gratifying state of afairs). Note: hese facts explain why the

igure of 80,000 rows per band quoted earlier in this section was too low. A more reasonable igure would be

115,000 or so (making the total number of bands 85 or so instead of 125).

•	 Note that banding does sufer from the drawback that it potentially introduces a degree—a tiny degree—of

redundancy into the stored data. Without banding (but with condensing), no ield value ever appears more

than once in the Field Values Table. With banding, however, the same ield value might simultaneously

appear in several distinct bands (though never more than once per band). he WEIGHT value 12.0 is a case

in point in Fig. 13.5: It appears in both band one and band two. Note: Such redundancy could even apply to

the characteristic ield, if values of that ield aren’t unique (clearly this can’t happen in the example, though,

because {P#} is a key—in fact, the only key—for the parts relation). More important, however, note that

this particular drawback (the possibility of a tiny amount of redundancy, that is) disappears anyway if the

approach to be described in Section 13.4 is adopted.

•	 Another drawback, perhaps more serious than the previous one, is the following: Since we no longer have

just one Record Reconstruction Table for the entire ile, it follows a fortiori that we can’t have a “preferred”

Record Reconstruction Table for the entire ile (as described in Chapter 7) that provides major-to-minor

orderings over all of the ields. However, it’s at least true that each of the local Record Reconstruction Tables

can be a “preferred” one so far as the records that belong to the band in question are concerned. he Record

Reconstruction Tables of Fig. 13.6 are preferred ones in this sense.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

218

File Banding

•	 Equality or range queries based on the characteristic ield can now be handled very eiciently by going

directly to the relevant band or bands. (I’m assuming here that the system will keep certain metadata in

memory, saying, for example, that band one has information regarding parts with part numbers in the range

P1-P4, band two has information regarding parts with part numbers in the range P5-P8, and so on.) Even if

several bands are involved, each can be processed independently of the rest (possibly even in parallel). And,

of course, once a given band has been streamed into memory, record reconstruction within that band is a

purely in-memory operation. Among other things, therefore, banding can provide functionality analogous,

somewhat, to that provided by a conventional clustering index on the characteristic ield (see Chapter 2 if

you need to refresh your memory regarding clustering indexes).

•	 Note inally that banding does not have to be done “by hand”; rather, it can be done automatically during

the load process (like factoring in the previous chapter), using built-in heuristics and statistical data analyses

that are also done at load time. In other words, the beneits of banding, like those of factoring, can be

obtained automatically, without any need for human decisions (except as noted in Section 13.5 below).

A Small Digression

You might have noticed something interesting has happened to band three in the example. Band three corresponds to a

single record; it therefore contains a Field Values Table of just a single row and a Record Reconstruction Table of just a

single row. Observe now that:

•	 In the case of the Field Values Table—ignoring the row ranges, which are clearly pretty pointless here

anyway—the single row is efectively a direct-image representation of the record in question: namely, the

“large-ile” record for part P9 (see Fig. 13.1).

•	 In the case of the Record Reconstruction Table, the single row contains a “zigzag” that’s in fact a straight

line—necessarily so, of course. But a zigzag that’s a straight line isn’t all that useful, because the pertinent

record can easily be “reconstructed” without it. To be speciic, the ield values of that record are now linked

by physical contiguity in the Field Values Table (or something that might be thought of as akin to physical

contiguity, at any rate).

It should be clear from the foregoing discussion that if the band size were such that every band corresponded to a single

record, then we would be getting rather close to a direct-image representation of the entire ile. It’s interesting to observe,

therefore, that—in a sense—the conventional direct-image style of representation might be regarded as just a highly

suboptimal special case of the much more general TR style of representation. I’ll leave this observation as something for

you to meditate on at your leisure.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

219

File Banding

13.3 Elaborating on the Example

Let’s get back to the main thread of our discussion. We’ve seen that, with banding, equality and range queries based on

the characteristic ield—the P# ield, in the example—can be handled very eiciently, because the implementation can go

directly to the relevant band or bands, stream it or them into memory, and complete processing of the query as a pure

in-memory operation. But what about queries based on some other ield? For example, consider the following SQL query:

SELECT DISTINCT P.P#

FROM P

WHERE P.WEIGHT = 12.0 ;

As I pointed out in the previous section, the WEIGHT value 12.0 appears in both band one and band two. In the worst

case, of course, the same WEIGHT value could appear in every band, precisely because the original ile was sorted on

P#, not WEIGHT. Now, it might at least be possible for the implementation to know, from the Field Values Table(s), just

which bands a given value does in fact appear in; but if it doesn’t (and possibly even if it does), a query like the one just

shown will efectively require a scan of the entire ile, and performance might thus be poor. As noted in Chapter 11, in

other words, the symmetric performance property is lost.

One way to address this problem is to band the original ile twice, once using P# as the characteristic ield and once using

WEIGHT. In this way, we can have one set of banded Record Reconstruction Tables corresponding to the P# sort order

and another set corresponding to the WEIGHT sort order: a form of controlled redundancy (see Section 13.5 for further

discussion). Figs. 13.7, 13.8, and 13.9 show, respectively, the banded version of the ile, the Field Values Tables for those

bands, and Record Reconstruction Tables for those bands, if we sort and band by part weight as suggested (more precisely,

by part number within part weight). Note: I’m still assuming four records per band, of course.

Fig. 13.7: Banding parts by weight

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

220

File Banding

Fig. 13.8: Field Values Tables for the bands of Fig. 13.7

Fig. 13.9: Record Reconstruction Tables for the bands of Fig. 13.7

he query

SELECT DISTINCT P.P#

FROM P

WHERE P.WEIGHT = 12.0 ;

can now be implemented by going directly to band one (only) in the foregoing banding, and symmetry of performance

is restored.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

221

File Banding

13.4 How it's Really Done

Now I need to clean up my act ... I said in Section 13.1 that we build a separate Field Values Table and Record Reconstruction

Table for each band in the banded ile. In fact, however, that statement isn’t quite accurate. What we really do is this:

First, we build a single Field Values Table for the entire ile in the usual way; then, for each band, we build a band-local

“Field Values Table” (or an analog of such a table, rather) that contains, not ield values as such, but rather pointers into

the overall Field Values Table for the whole ile.

Let’s see how this works out in our example. First, Fig. 13.10 (a copy of Fig. 13.2) shows the Field Values Table for the

entire “large ile” from Fig. 13.1:

Fig. 13.10: Field Values Table for the large ile of Fig. 13.1 (same as Fig. 13.2)

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Go Faster!

222

File Banding

Let’s assume once again that we want to sort and band on part number. Here then (repeated from Fig. 13.4) is the irst band:

Here’s the Field Values Table for this band as given in Fig. 13.5:

And here’s the corresponding analog of this Field Values Table with pointers into the main Field Values Table of Fig.

13.10 instead of actual ield values (for convenience, I’ve extracted the corresponding Record Reconstruction Table from

Fig. 13.6 and shown it on the right):

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

223

File Banding

Here for completeness are the Field Values Table analogs and Record Reconstruction Tables for the other two bands:

By way of example, let’s consider the problem of reconstructing the record for part P6, say. he sequence of events is as

follows:

•	 First we perform an in-memory look-up for part P6 in the Field Values Table of Fig. 13.10, and we discover

that the record we want passes through cell [6,1] of that table.

•	 Knowing that part P6 falls into band two, we adjust that [6,1] to [2,1] to account for the fact that band

one contains four parts. Note: Actually this step is unnecessary in our example, because I’ve numbered the

rows 1-4 within band one, 5-8 within band two, and 9 within band three, and so we already know—albeit

unrealistically—that [6,1] refers to a cell within band two. For deiniteness and clarity, I’ll continue to rely on

that unrealistic assumption that row numbers are globally unique as shown in the igures.

•	 We stream band two into memory if it’s not already there.

•	 Next, we follow the zigzag passing through cell [6,1] of the Record Reconstruction Table in band two (an

in-memory process). hat zigzag looks like this:

[6,1], [6,2], [7,3], [5,4]

We use in-memory look-ups to determine that the pointers (row numbers) in the corresponding cells of the

corresponding Field Values Table analog are:

6, 3, 5, 1

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

224

File Banding

•	 We therefore go to cells

[6,1], [3,2], [5,3], [1,4]

of the Field Values Table of Fig. 13.10 (another in-memory process). he corresponding values are:

P6, Cog, 19.0, cc1

Reconstruction of the desired record is now complete.

At this point I’d like to remind you of something. In Chapter 5 (Section 5.6), I pointed out that row numbers can be regarded

as surrogates for ield values. In the record reconstruction example just now, for instance, the sequence of row numbers

6, 3, 5, 1

can be regarded as surrogates for the sequence of ield values

P6, Cog, 19.0, cc1

hus, we might reasonably think of the band-local Field Values Table analogs as containing, not actual ield values as such

(as indeed we now know), but surrogates for such ield values instead.

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Go Faster!

225

File Banding

13.5 Controlled Redundancy

In Section 13.3, I said that banding the parts ile twice, once on part number and once on part weight, amounted to a

form of controlled redundancy. Now, as I’m sure you know, redundancy in what’s stored is usually considered to be a

bad thing—not least because it can lead to inconsistencies. However, it’s only when the redundancy is uncontrolled that

it’s unquestionably bad. Controlled redundancy—in other words, redundancy that’s deliberately introduced and properly

managed—is (or can be) ine; indeed, there are many sound reasons, both business and technical reasons, for storing

several copies of the same data. But it does need to be understood that “controlled” here means that

a) he DBMS must be aware of the redundancy if it exists,

and more particularly that

b) he DBMS must take responsibility for “propagating updates” and maintaining data consistency (in other

words, the redundancy must efectively be hidden from the user). I’ll come back to this point in a few

moments.

Let’s return for a moment to the example from Section 13.3. Banding the parts ile twice as suggested in that section clearly

means we’re going to need twice as much storage space. But I remind you that the data is already highly compressed;

typically, as I pointed out in the introduction to this chapter, the TR representation requires only some 20 percent of the

space required for a direct-image representation of the same data. So we can aford to band and store the original ile ive

diferent ways and still not require any more storage than a conventional system does—and that’s before the storage for

indexes and other auxiliary structures is taken into account, in the direct-image case. Note: he point is worth making

that indexes and the like efectively constitute a form of controlled redundancy in conventional systems anyway. And I’ve

already mentioned the amount of storage space that kind of redundancy can involve (as noted in Section 13.1, a further

ivefold increase is not at all atypical).

he kind of redundancy we’re talking about in TR, then, is (to repeat) only redundancy on top of something that’s already

highly compressed. What’s more, it’s only redundancy on top of that portion of the data that can’t be handled by the factoring

techniques of Chapter 12. And what’s more again, it’s the right kind of redundancy. It’s not the ield values that are stored

redundantly; rather, it’s the linkage information. (No ield value is ever stored more than once on the disk—assuming,

of course, that column condensing and merging is done, as it certainly will be in a disk implementation. Contrast the

situation in a direct-image system, with its indexes and other auxiliary structures, where it’s virtually guaranteed that the

very same ield values will be stored many, many times over.) Storing the linkage information in diferent ways in a disk-

based system is precisely what lets us achieve symmetry of performance in such a system.

Note, moreover, that it’s a comparatively straightforward matter to decide what redundancies to store (in other words,

to decide what sortings and bandings should be done). Detailed knowledge of the internal workings of the system is not

required; nor is detailed knowledge of exactly the kinds of queries that users will submit. All that’s needed is a general

sense as to which ields are the pragmatically important ones—and this knowledge could even be obtained by the system

itself, by analyzing actual or typical query sequences. Of course, if the system doesn’t determine for itself what sortings

and bandings are desirable, then the database administrator will have to tell it; in other words, human decisions will be

required. But (to repeat) I don’t think the decisions in question are very diicult ones.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

226

File Banding

Now, the obvious drawback to storing data redundantly is the impact it’s likely to have on updates: If N distinct copies

are stored of some given data item X, then an update to any one of those copies must be propagated to all the rest. But

this is a much more tractable problem in TR than it usually is for at least two reasons:

•	 First, I’ve already said that ield values as such aren’t stored redundantly (so that “data item X” in my

example just now can’t be a ield value in TR). Note in particular that update propagation can’t afect index

entries in TR, because there aren’t any index entries in TR. hus, update propagation is primarily a question

of maintaining the pointers that are used in record reconstruction.

•	 Second, updates in the real world typically afect only a tiny portion of the overall database, as explained in

Chapter 6. Typically, TR exploits this fact by keeping most of the database static for most of the time and

segregating all updates in a much smaller overlow structure of their own (see Chapter 6, Section 6.5). hat

overlow structure is thus the only portion of the database that needs to be maintained in real time, and

hence the only place where anything like update propagation has to be done in real time.

One last point in connection with redundancy in TR: Even if the database as stored does involve redundancy in the form

of diferent bandings, there’s no need to copy all of those diferent bandings to backup storage every time a full database

backup is to be taken. All that’s necessary is to copy just one of the bandings (the others can be recreated from that one).

Endnotes

1. To a irst approximation yet again. In fact, as we saw in Chapter 11 (Section 11.5), there are compression

techniques that do still work, even on that large table. For simplicity, however, I won’t attempt to incorporate

any of those techniques into my examples in this chapter.

2. his is not an overstatement. For example, in a report on the performance of a certain well-known

SQL product on the standard TPC-H benchmark, reference [67] shows a raw data set of three terabytes

expanding out to occupy nearly 60 terabytes of disk space, a twentyfold increase.

3. Contrast factoring, where we decompose iles vertically (see the previous chapter). Indeed, just as there

are certain parallels between factoring and conventional projection/join normalization, so there are certain

parallels between banding and what might be called restriction/union normalization. Restriction/union

normalization is a logical design technique, not much researched at the time of writing and certainly not yet

much used in practice, in which the decomposition operator is restriction and the recomposition operator is

union [32].

http://bookboon.com/

